

7

3 -carboxaldehyde, 1 -naphthaldehyde, p-nitrobenzaldehyde, and anisaldehyde gave the corresponding 8substituted theophyllines: 8-(3^{\prime}-Indolyl)theophylline melted $>360^{\circ}$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{\mathrm{j}} \mathrm{O}_{2}: \mathrm{C}, 61.01$; H, 4.44; N, 23.72. Found: C, 61.01; H, 4.44; N, 23.86. 8-(1'-Naphthyl) theophylline melted at 328$329^{\circ}$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}: \mathrm{C}, 66.65 ; \mathrm{H}$, $4.61 ;$ N, 18.29. Found: C, 66.70; H, 4.54; N, 18.36. 8 -(p-Nitrophenyl) theophylline melted $>360^{\circ}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}_{4}$: $\mathrm{C}, 51.83 ; \mathrm{H}, 3.68 ; \mathrm{N}$, 23.25. Found: $\mathrm{C}, 51.61 ; \mathrm{H}, 3.69$; N, 23.19. 8 - p Methoxyphenyl)theophylline melted $>360^{\circ}$. Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 58.73 ; \mathrm{H}, 4.93 ; \mathrm{N}, 19.57$. Found: C, 58.55 ; H, 4.97 ; N, 19.74.

By analogy with the preceding results, condensation of 1 with phenylglyoxal should have given 8 -benzoyltheophylline, or perhaps the secondary alcohol formed by reduction of the carbonyl group with formic acid. However, the reaction took a completely unexpected course and gave 1,3 -dimethyl- 7 -phenyl- $2,4-(1 \mathrm{H}, 3 \mathrm{H})$ pteridinedione $(8)^{6}$ and 1,3 -dimethyl-4-amino- 5 -benzamidouracil (9) (m.p. $287-289^{\circ}$; $\nu_{\text {max }}^{\mathrm{Num1}} 34(0), 3355$, and 3200 cm. ${ }^{-1}$. Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}: \mathrm{C}, 56.93$;

[^0] (1956)

H, 5.15; N, 20.43. Found: C, 56.97; H, 5.09; N, 20.23) in approximately equal amounts. The former compound must arise by initial reduction of 1 with formic acid to 1,3 -dimethyl-4,5-diaminouracil, followed by condensation with phenylglyoxal (thus giving the 7 phenyl isomer exclisively), ${ }^{7-9}$ while the latter compound apparently arises by initial condensation of the 4 -amino group of 1 with phenylglyoxal followed by reduction of the nitroso group to the hydroxylamino stage, cyclization, dehydration, and deformylation.

During the course of this work it was noted that 1 behaved anomalously on heating. The compound decomposes at its melting point with copious evolution of brown fumes and the loss of its characteristic lavender color, but as the temperature is raised above the melting point the melt resolidifies to an orange solid which does not melt below 360°. We have identified the latter compound as the pyrimidopteridine 7 and suggest that it arises by a reverse-nitrosation reaction (which apparently can be either thermally or acid induced) to give 1,3 -dimethyl-4-aminouracil, which then condenses with unchanged 1 to give $7 .{ }^{10}$

The many complex reactions undergone by the 4 -amino- - -nitrosopyrimidine 1 under apparently straightforward conditions call attention to the possibility that similar complications may arise with other 4 -amino-乞-nitrosopyrimidines, which are ubiquitous intermediates for the synthesis of purines, pteridines, and other fused pyrimidine heterocycles.

Received August 6. 1964

A Nuclear Magnetic Resonance Study of a Carbonium Ion Exchange Reaction

Sir:
We wish to report that halide exchange occurs between covalent trityl halides and trityl cations and that the n.m.r. method readily provides data on the rates and mechanism of this exchange process.

The n.m.r. spectrum ${ }^{1}$ of a methylene chloride solution of tris (p-tolyl)methyl chloride (I) exhibits sharp lines at -424.5 and -139.5 c.p.s. for phenyl and methyl protons while the carbonium ion tris(p-tolyl)methyl hexachloroantimonate (II) displays an $\mathrm{A}_{2} \mathrm{~B}_{2}$ quartet centered at -457.5 c.p.s. (phenyl) and a singlet at -162 c.p.s. (methyl). The individual spectra are essentially independent of temperature and solvent, in contrast to a mixture of the two components.

Time-averaged, temperature-dependent methyl proton resonances of an equimolar mixture of I and II in methylene chloride are shown in Fig. 1. At 37° the sharp singlet is at precisely the chemical shift (-151 c.p.s.) expected for exchange averaging of the methyl protons of I and II and varies directly with the mole fraction of the constituents. As the temperature is

[^1]

Fig. 1.-Temperature dependance of methyl protons for equimolar mixture of I and II in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.
lowered, the line broadens and splits symmetrically into two components. An analogous process occurs with the phenyl protons. An Arrhenius plot of the data ${ }^{2}$ gives $E_{\mathrm{a}}=7 \mathrm{kcal} . /$ mole from the methyl protons and $8 \mathrm{kcal} . /$ mole from the phenyl protons, the agreement falling within experimental error.

The exchange reaction (eq. 1) suggests a bimolecular mechanism and second-order kinetics. Equally pos-

$$
\begin{gathered}
\underset{\mathrm{I}}{\mathrm{Ar}_{3} \mathrm{CCl}}+\underset{\mathrm{II}}{\mathrm{Ar}_{3} \mathrm{C}^{+}-{ }_{\mathrm{Y}}-\stackrel{k_{\mathrm{x}}}{\rightleftharpoons}} \mathrm{Ar}_{3} \mathrm{C}+\mathrm{Y}-\mathrm{Ar}_{3} \mathrm{CCl} \\
\mathrm{Ar}=p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}, \mathrm{Y}=\mathrm{SbCl}_{6}
\end{gathered}
$$

sible is the Sn1-type process (eq. 2) which requires

$$
\mathrm{Ar}_{3} \mathrm{CCl} \underset{k_{\mathrm{r}}}{\stackrel{\mathrm{kf}^{2}}{\rightleftharpoons}} \mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl}^{-}
$$

$$
\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl}^{-}+\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-} \stackrel{k_{\mathrm{x}}}{\rightleftharpoons} \mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}+\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl}^{-}
$$

first-order kinetics (k_{f} rate determining). ${ }^{3}$ From differential line-broadening data we may distinguish between these alternatives.
Figure 2 illustrates this differential broadening for solutions containing different proportions of I to II at -56°. From the line half-widths (δ_{f}) one may calculate the lifetimes (τ) of both species using ${ }^{6}$

$$
\begin{equation*}
\frac{1}{\tau}=\pi\left(\delta_{\mathrm{f}}-\delta_{\mathrm{f}_{0}}\right) \tag{3}
\end{equation*}
$$

where $\delta_{f_{6}}$ is the half-width in the absence of exchange averaging. To discriminate between (1) and (2), expressions are derived for τ_{1} and τ_{ft} using the general definition ${ }^{6}$

[^2]

Fig. 2.- Concentration dependance of line broadening of methyl protons of $\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{C}^{+} \mathrm{SbCl}_{6}^{-}$(II) and $\left(p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{8} \mathrm{CCl}$ (I) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at -56°. The concentration of I is: (A) $0.167 M$, (B) $0.125 M$, (C) $0.084 M$.
$\tau=$ concentration of species/rate of disappearance
of species
Assuming bimolecular process (1), eq. 5 is derived

$$
\begin{gather*}
\tau_{\mathrm{I}}=\frac{\left[\mathrm{Ar}_{3} \mathrm{CCl}\right]}{k_{\mathrm{x}}\left[\mathrm{Ar}_{3} \mathrm{CCl}\right]\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right]}=\frac{1}{k_{\mathrm{x}}\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right]} \\
\tau_{\mathrm{II}}=\frac{\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}}{k_{\mathrm{x}}\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right]\left[\mathrm{Ar}_{3} \mathrm{CCl}\right]}=\frac{1}{k_{\mathrm{x}}\left[\mathrm{Ar}_{3} \mathrm{CCl}\right]} \tag{5}
\end{gather*}
$$

Lack of agreement between the line-broadening data and the concentration dependence requirements of (5) effectively eliminates this mechanism.

For the Snl mechanism (2), only k_{f} is involved in disappearance of I, yielding

$$
\begin{equation*}
\tau_{\mathrm{I}}=\left[\mathrm{Ar}_{3} \mathrm{CCl}\right] /\left(k_{\mathrm{f}}\left[\mathrm{Ar}_{3} \mathrm{CCl}\right]\right)=1 / k_{\mathrm{f}} \tag{6}
\end{equation*}
$$

A simplified derivation of $\tau_{\mathrm{Ars}_{3} \mathrm{C}^{+}}$is obtained from (4) if we assume that $k_{x^{\prime}}\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl}^{-}\right]\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right] \gg$ $k_{\mathrm{r}}\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl} l^{-}\right]$and $\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right] \gg\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl}^{-}\right] .{ }^{7}$ The only process now responsible for carbonium ion disappearance is that whose rate is $k_{\mathrm{r}}\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl}-\right]$, yielding

$$
\begin{align*}
& \tau_{\mathrm{II}}=\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right] /\left(k_{\mathrm{r}}\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Cl} \mathrm{Cl}^{-}\right]\right)= \\
& {\left[\mathrm{Ar}_{3} \mathrm{C}^{+} \mathrm{Y}^{-}\right] /\left(k_{\mathrm{f}}\left[\mathrm{Ar}_{3} \mathrm{CCl}\right]\right)} \tag{7}
\end{align*}
$$

The requirements of the lifetime expressions are clear: (6) states that τ_{1} be concentration invariant, and (7) dictates that τ_{11} vary directly with the ratio of II:I. The experimental results (Fig. 2 and Table I) are in accord with these conclusions. Variation in concentration of I or II does not affect the chloride line whose half-width remains at 7.0 ± 0.5 c.p.s., and application of (3) and (6) yields an average value of $1 / \tau_{\mathrm{I}}=k_{\mathrm{f}}$ of $8.9 \pm 0.2 \mathrm{sec} .^{-1}$ at -56°. The calculated τ_{11} (column 4, Table I) exhibits the concentration dependance predicted by (7) and yields (column 5 , Table I) an average value for k_{f} of $7.8 \pm 0.4 \mathrm{sec} .^{-1}$. in good agreement with the previous value.
(7) The first assumption follows from the work of Swain, ${ }^{4}$ and the second is justified by the small equilibrium constant for the ionization of 1 (see below).

Table I
Variation of Differential Line Broadening with Concentration at -56°; Determination of k_{f}

[I], M	[11]. M	$\begin{gathered} 1 \cdot \tau_{1}= \\ \hat{k}_{\mathrm{f}, \text { sec. }}, 1 \end{gathered}$	$\begin{aligned} & 1 / \tau_{\mathrm{II}} \\ & \mathrm{sec} . \end{aligned}$	kf. $\mathrm{sec} \mathrm{Cl}^{-1 /}$
0.125	0.125	9.1	8.1	8.1
0.167	0.084	9.1	14.7	7.4
0.084	0.167	8.8	3.7	7.4
0.063	0.063	8.8	8.1	8.1
0.083	0.042	8.8	16.1	8.2

Knowledge of the equilibrium constant ($K_{\text {eq }}=k_{\mathrm{f}} / k_{\mathrm{r}}$) now makes k_{r} accessible. Ultraviolet data, " using similar solutions of I as for the nim.r. experiments, yielded a value of $K_{\mathrm{e}_{\mathrm{i}}}=2.8 \times 10^{-4}$ at $-5\left(5^{\circ} .{ }^{9}\right.$ Using an average value of $k_{\mathrm{f}}=8.4 \mathrm{sec} .^{-1}$, then $k_{\mathrm{r}}=3 \times$ $100^{4} \mathrm{sec} .^{-1}$.

The conclusion that exchange between I and II occurs via an Sn1 process agrees with our prelinitiary observation that factors which affect the exchange rates are those which modify k_{f}. Accordingly, rate enhancements are observed with: (a) increasing solvent polarity, (b) increasing halogen polarizability, and (c) cation-stabilizing ring substituents. Work is continuing.

Acknowledgment.-The authors thank Professors G. Whiteside, C. G. Swain, and H. Morawetz for helpful discussions.

[^3]Received August 5. 1964

The Phenylation of Pyridine-Metal Complexes

Sir:

The chemical reactions of coordinated ligands have been an area of recent interest to others, ${ }^{1}$ and also to us in terms of their free-radical chemistry. ${ }^{2}$ To further this inquiry, a set of experiments was designed whereby phenyl radicals were caused to react with pyridine dissolved in N.N-dimethylformanide and in separate experiments with a group of pyridine-minetal complexes dissolved in the same solvent.

A large number of complexes of pyridine were prepared, and the ones indicated in Table I were found to be completely stable to the reaction conditions (all analyses were satisfactory). This stability was ascertained by using the pyridine ligand bands in the infrared." The stable complexes showed no change in the ligand bands when newly dissolved in dimethylformamide, after standing at least 4 days in the dimethylformanide at 25°. and after 4 days in the solvent plus the phenyl source at 25°. However. new

[^4]Table I
Phenylation Isomer Ratios

$\begin{aligned} & \text { Complex } \\ & \text { mole } \end{aligned}$	Phenyl source, mole	$\begin{gathered} \text { 2-Phenyl } \\ \end{gathered}$	3-I lienyl,	\& l'heoyl.
Pyridine" (0. 150)	0.0150	41.1	39.0	19) 8
$\begin{gathered} \mathrm{Co}\left(\mathrm{I}_{\mathrm{y}}\right) \mathrm{Cl} \mathrm{Cl}_{3} \\ (0.021) \end{gathered}$	0.0124	66.7	13.1	20.2
$\operatorname{Cr}\left(1^{\prime} y\right)_{3} \mathrm{Cl}_{4}$ (0), 04:3)	().0124	45.0	19.0)	360
	(1).0124	46.0	23.0	31.8
$\begin{aligned} & \mathrm{Mn}_{\mathrm{H}}\left(\mathrm{P}_{\mathrm{y}}\right)_{4}(\mathrm{SCN})_{2} \\ & (0 .(242) \end{aligned}$	().1)124	34.9	32.8	32.9
$\begin{aligned} & \mathrm{Ni}\left(\mathrm{P}_{\mathrm{y}}\right)_{4} \mathrm{SCN}, \\ & (0,018) \end{aligned}$	(). 1$) 124$	23.8	34.5	41.8
$\begin{aligned} & \left.\mathrm{Cd}(\mathrm{P} y)^{(S C N}\right)_{2} \\ & (0.046) \end{aligned}$	(). f)124	43.3	33.6	23.2

bands were formed owing to the phenylation of the connplexes under the last conditions, but no bands owing to free pyridine. When the decomposition of any complex was evidenced by either a decrease in the intensity of the ligand infrared bands, or a color change. or the formation of a precipitate (silver metal by an oxidation reduction reaction with the silver complex) over a 5 -day period, that complex was discarded. The phenyl source used was N -nitroso-sym-diphenylurea which was completely decomposed at 25° over a 3 day period under the reaction conditions. This phenyl source was prepared by the known method ${ }^{4}$ and also by the reaction of diphenylurea with nitrosylsulfuric acid generated in situ by the action of water upons nitrosylsulfuric anhydride.

The pure isomeric phenylpyridines were prepared by the phenylation of pyridine by a standard method and separation of the three phenylpyridines by preparative thin layer chromatography. The picrates of the separated samples agreed with those reported previously." Mixtures of the isomers. both prepared and from the reactions, could be separated and their relative amounts measured by gas chromatography using specially prepared columns. The reliability of the method for isomer determination was checked and the results are: known mixture, 39.1:39.9:21.0; gas chromatographic integration values, $41.5: 36.2: 2.2$: column factor, $0.94: 1.10: 0.95$; and calculated values. 38.6:38.0:2:3.2. It was shown that the isolation procedures were sutficiently efficient to begin with 11.48 g . of products in a $70.9: 18.9: 10.1$ ratio and obtained 0. 47 g . in a $71.0: 19.6: 9.5$ ratio. When these methods were applied to phenvlation reaction mixtures involving complexes, the data in Table I were obtained.

A typical reaction involved dissolving 16.7 \&. (0.04!) mole) of dipyridinezinc(II) thiocyanate in $\mathrm{s}(\mathrm{m}$ ml. of dimethylformanide, followed by the rapid addition of 3.06 g . (0.124 mole) of N -nitroso-sym-diphenylurea and allowing the mixture to stand for 3 days. Isolation involved evaporation of the solvent under vacuunir, decomposition of the complex witl base, filtration. extraction with toluene, acidification, extraction. neutralization, extraction with carbon disulficle, and

[^5]
[^0]: (6) G. P. G. Dick. H. C. S. Wood, and W. R. Logan. J. Chem. Soc., 2131

[^1]: (1) Varian A-60 spectrometer; internal TMS.

[^2]: (2) H. S. Gutowsky and C. H. Holm, J. Chem. Phys., 25, 1228 (1956).
 (3) Both Swain ${ }^{4}$ and Hughes ${ }^{5}$ have demonstrated that exchange of tetraalkylammonium radiohalide with trityl chloride in benzene follows firstorder kinetics with rate independent of added radiohalide. The bimolecular mechanism (1) cannot, however, be excluded on this basis inasmuch as the acidity of carbonium 2.5 ammonium ion makes the bimolecular exchange reasonable for the former. Our assumption that in our low dielectric solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ we are dealing primarily with solvated ion pairs, rather than free ions, followed the similar conclusion of Swain ${ }^{4}$
 (4) C. G. Swain and M. M. Kreevoy, J. Am. Chem. Soc., 77, 1122 (1955).
 (5) E. D. Hughes et al., J. Chem. Soc., 1220 (1957).
 (6) J. E. Leffer and IE. Grunwald. "Rates and Equilibria of Organic Reactions." John Wiley and Sons, Inc., New York. N. Y., 196.3, pp. 88, 89.

[^3]: (8) We thank Dr. R. Waack and Miss M. Doran for the low-temperatare ultraviolet data.
 (9) This cempares to $K_{\text {cq }}=2.1 \times 10^{-1}$ for $1{\mathrm{in} \mathrm{Cl}_{3} \mathrm{CCHCl}}_{2}$ at 20° [A. G. Evans, A. Price. and J. H. Thomas, Trans, Faraday Soc., 52, 3:32 (19:56)).
 The Dow Chemical Company
 H. H. Freedman

 Eastern Research Laboratory
 A. E. Young

 Framingham, Massachusetts
 V. R, Sandel

[^4]: (1) "Reactions of Coordinated Ligands," D. H. Busclı. Ed., Advances in Chemistry Series 37, American Chemical society, Washingtori, 1). C I96.3.
 (2) K. J. Gritter and E. L. Pat more Proc. (heme Soc. 328 (13tiv)

[^5]: it A. Hantrich and [i. Wechsler, Ains. 325, 206 (1402)
 $37: 1940$

